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VARIATIONAL P R I N C I P L E S  AND E S T I M A T E S  

FOR T H E  R I G I D I T I E S  OF BODIES  W I T H  VOIDS 

A. G. Kolpakov UDC 539.3 

Variational principles and estimates (including two-sided estimates) are obtained for the 
rigidities of bodies containing periodic systems of pores (voids). The problem is examined on 
the basis of the asymptotic averaging method. 

Formula t ion  of the  P r o b l e m .  We are examining three-dimensional composites, plates, and beams. 
By their rigidities, we mean the averaged elastic constants: in-plane and bending rigidities for a three- 
dimensional composite, tensile and bending rigidities for a plate, and torsional rigidities for a beam. Rigidities 
are calculated by means of formulas that follow from the asymptotic method in [1]. We note that most of the 
bodies with periodically positioned voids are plates and beams. 

We examine an elastic body with a periodic structure having the periodicity cell Pc, where e is the 
characteristic dimension of the cell. We have a three-dimensional composite when the periodicity cell is 
repeated along three coordinates, a plate when the periodicity cell is repeated along two coordinates, and a 
beam when the periodicity cell is repeated along one coordinate. The resulting region is denoted by Qe. The 
elastic constants of the body aiikl are functions of the argument x /e  and axe periodic along Zl, z2, and xa 
for the composite, along xl and x2 for the plate, and along xl for the beam. 

We examine the problem of the theory of elasticity in the region Q~. It is known [1-5] that as e --* 0 
the solution of this problem approaches the solution of problems of the theory of elasticity for uniform bodies 
[1-3], plate theory [3, 4], or beam theory [3, 5]. To obtain the rigidity characteristics of the above-indicated 
limiting bodies, we solve a so-c.alled cellular problem. This problem can be written as follows for all of the 
cases considered: 

(aiikt(Y)(N~ + fM(Y)))d = 0  in P1; 

aijkt(y)(NtM, t + fM(y))nj  = 0  on 7UF;  

NM(y) is periodic over ym (m E D). 

(I.I) 

(1.2) 

(1.3) 
Here y = x/e are dimensionless variables, P1 = r  = { y  = x / r  : x E Pc} is a periodicity cell in 
dimensionless variables, n is a normal to 7 U F (Fig. 1), M is a multiple index (D = {1, 2, 3} for three- 
dimensional composites, D = {1, 2} for plates, and D = {1} for beams). 

The rigidity characteristics are calculated from the formula 

A M = (aijkt(y)(Ni M + f iM(y))(N~ + fM(y))), (1.4) 

( ) = 1 [ 
where mes S ~dY is the mean over a periodicity cell in the dimensionless coordinates y. Here S = P1 uQ1 

PI 
for three-dimensional composites, S is the projection of P1 U Q1 onto the plane Oyly2 for plates and onto the 
Oyl axis for beams. 
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Fig. 1 Periodicity cell voids F for a beam: Q1 are the, F is 
the free surface, 7 are the boundaries of voids, w+ and w_ are 
the adjacent boundaries of the periodicity cell. 

Formula (1.2) was derived in [1, 2] for three-dimensional composites, in [4] for plates of constant 
thickness, and in [6] for cylindrical beams. In the general case, they are derived from the cellular problem 
(1.1), as they were in the studies just cited. The formulas for the averaged characteristics [1-6] have the form 

A M = ((-1)"y~(aijt,(y)(-l)Uy v + aijmn(y)N~V,,(y))) (1.5) 

[M = (ijklvp), values of the indices having been given in [1-6] and thus being omitted here]. 
We use formula (1.2) as the initial formula. The elastic constants aijkt are subject to the standard 

conditions [7]: for all y 6 PI, we have 

lai/u(y)l ~< C < co; (1.6) 

aiikl(y)eiiekz >t c[e//[ 2 for any e i i =  eii, (1.7) 

where 0 < c and C < co are independent of y and eli. 
2. Var ia t iona l  P r o p e r t i e s  and  Es t imates  for Rigidity.  For the cellular problem (1.1)-(1.3) we 

introduce the Lagrange functional 

J,(u) = G(Au), 

where 1 
G(p) = ~ (--ai./k/(Y)PijPkl -- 2ai./kl(y) f i~  (Y)Pki); 

(2.1) 

(2.2) 

(2.3) (Au)ij = ui j .  

The Lagrange functional is examined on the set of possible displacements: 

V = {u 6 Hi(P1): u(y) is periodic over y,,, (m 6 D)}. (2.4) 

Equations (1.1)-(1.3) are the equations of the Euler variational problem 

Ju(u) ~ max, u E V. (2.5) 

If conditions (1.6)-(1.7) are satisfied, the solutions of problems (1.1)-(1.3) are accurate to within the 
displacement values corresponding to the displacements of a rigid body [1-5]. On the set I~ = {u E V: (u) = 
0} ((u~STys) = 0 for a beam), the solutions of these problems are unique and coincide, since the equality 

A M = ( a i j k l ( y ) f M ( y ) f M ( y ) )  -- 2J~(N M) (2.6) 

follows from (1.1), (1.4), and (2.1). Here Ju(N M) = m ~  Ju(u). 

Now we shall obtain the Castigliano functional. Following [8], we introduce the space H = {L2(PI)} 6 
and its dual conjugate space H*. The dual problem of (2.5) is the problem [8] 

h*(p*) ---* min, p* 6 H*, (2.7) 

h*(p*) = sup sup [(A*p*,u) - (p*,q) - G ( q ) ]  = sup [(A*p*,u) - G*(p*)]. 
uEV q6H uEV 

(2.8) 
where 
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Here G*(p*) is a functional conjugate with G(p), A*: H* ~ H is an operator conjugate with A, and ( , )  
denotes the operation of pairing of the elements of V* and V. 

We examine the term (A'p*, u). It can be written in the form 

/. /. /. ] mes~ Pijuij dy = mes S - pij,jui dy -i- pijnjui dy -'I- pijnjui dy . (2.9) 
PI PI "CUr to 

We integrate by parts in (2.9). If the sum of the integrals in the angle brackets in (2.9) is not equal to zero, 
then the upper boundary  of (2.8) is equal to +co. In that  case, (2.7) has a min imum which is not equal to 
+oo if 

Pi*j,j = 0  in P1, Pi~nj = 0  on 7 U F ,  (2.10) 

which corresponds to the equilibrium equation and boundary conditions in stresses. 
Allowing for the  fact tha t  the values of the function u E V coincide at the boundaries w+ and w_, we 

can write the last integral in (2.9) in the form 

f [pi~]njui dy, (2.11) 
~+ 

where [ ] denotes the difference in the values of the function at the boundaries of the periodicity cell w+ and 
w_ (Fig. 1). In deriving (2.11), we considered that  the normals to these boundaries oppose one another. The 
periodicity condition for u E V must  be satisfied in order to have integral (2.11) vanish for any Pijnj.* �9 

We now introduce the set of allowable stresses 

E = {uij E H: ail,j = 0 in P1, ailnl = 0 on 7 U F, all(y) is periodic over ym (m E D)}. (2.12) 

We identify the space H with its conjugate space H* (all is identified with Pil). Then Eq. (2.8) takes 
the form 

h*(p*) = -G*(cr) + Xr.(u), (2.13) 

where Xr~ is the indicator function of the set ~ [X•(U) = 0 if aij E ~ and Xr.(a) = +co  if aij • E]. We 
introduce the Castigliano functional Jr(a) = -G*(a) .  Then,  with allowance for (2.13) problem (2.7) takes 
the form 

g . ( a )  .--+ min, aij E ~. (2.14) 

The Korn inequality [1-6] is valid for the functions of V~. Then the conditions of theorem III [8, Sec. 
4.1] are satisfied on V0, so that  we obtain the equality max J~(u) = min h*(p*). Since J~(u) is independent 

uEVo p*EH* 
of the terms that  correspond to the displacement of a rigid body, we have the equality 

m ~  J~,(u) = min h*(p*), 
p*EH* 

which in the present case takes the form 

maxJu(u )  = min J,,(a). (2.15) 
uEV aijEE 

Using Eq. (2.6), we obtain the following equality from (2.15): 

A M = (aijkt(y)fi M(y) fM (y)) _ 2 max Ju(u),  (2.16) 
uEV 

A M = (aijkt(y)fiM (y) fM (y)) _ 2 min J~(a), 
~ii E E 

which represents two variational principles (in displacements and in stresses) for rigidity. 
With arbitrary u E V, Crij E ~,  we use (2.16) to obtain a two-sided est imate 

(a i j k t ( y ) f iM(y ) fM(y ) ) -  2Ju(u) /> A M >t (a i jk l (Y) f iM(y) fM(y) ) -  2J~(o'). (2.17) 
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Fig. 2. Periodicity cells: P1 is the initial 
cell, P is the circumscribed cell, and P 
is the inscribed cell. 

The functional G* (p*) is easily calculated [8]: 

1 --1 * * M , 1 M M 
- f i j  (Y)Pij ~aijkt(Y)fij (Y)f~t (Y)- (2.18) G* (p*) = - ~ aijkt(y)pijpk t 

- 1  Here aijkl is the tensor that is the inverse of aijkl. 
3. Es t ima te s  for Rigidi t ies .  Inscribed and Circumscribed Periodicity Cells. For materials with voids, 

we can introduce inscribed P_ and circumscribed P periodicity cells into the discussion: P__ C P1 C P. Here 
the boundaries of the periodicity cell P_ and P, which intersect w+ and w_, must be congruent (Fig. 2). 

The variational principle in displacements (2.16) can be written in the form 

A M = min f (u) ,  (3.1) 
u E V  

where 
F(u)  = (aiikn(Y)(Udd + fd M (Y))(uk,z + FM(y))). 

Equation (3.1) follows from (2.1)-(2.3) with allowance for the known symmetries of the elastic constants 
aiik: [7]. 

Now we introduce the set of possible displacements _V and V by replacing P1 in (2.4) by P_ and P,  
respectively. We also define three functionals _F(u), F(u) ,  and F(u)  on one space V, assuming that aijkz(y) = 0 
outside V for the functional F_(u) and that aiikz(Y) = 0 outside P1 for F(u).  By virtue of conditions (1.6) 
and (1.7), for any u E V we have 

F(u)  ~< F(u)  <~ ]~(u) ; (3.2) 

min F(u)  = u ~ '  f (u ) ,  min f ( u )  = min r (u ) .  (3.3) 
uEV -- uEV ueV 

Having taken the minimum in (3.2) for u E V and using (3.3) and the variational principle (3.1), which 
is valid for each P ,  P1, and P from the periodicity cell, we obtain 

AM <~ AM <~ .~M, (3.4) 

where A M a n d  ~M are the rigidities of the structures formed on the basis of the inscribed and circumscribed 
periodicity cell. 

Formula (3.4) generalizes a well-known fact of the mechanics of finite-dimensional structures: the 
addition or removal of a constraint does not decrease or increase rigidity. 

Now we examine the case where a periodicity cell PI is divided into two nonintersecting periodicity 
cells p1 and p2, the projections S of which coincide with the projection of P1. We use the variational principle 
in stresses. We introduce the set of allowable stresses E 1 and E 2 by replacing P1 by p1 and p2 in (2.12). For 
the allowable stresses determined on p1, we introduce the continuation operator 

! o'ij(y) for y E p1, (3.5) Caij 0 for y E PI\P 1. 
% 

We prove that Co'ij E E. To do this, it is sufficient to establish that o'~j = Caij satisfies the equality 
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aeu,J' = 0. We multiply a~j ~,J, where ~ (y )  belongs to the set of smooth finite functions ~D(P1) [9]. Integrating 
by parts with allowance for the fact that  o'ijnj = 0 on 7, we obtain the equality 

P, P, 

for any ~o E ~D(PI), which proves the above proposition. 
Similarly to (3.5), we introduce the continuation operator from E 2 into Y:.. We use for it the same 

notation C. 
2 E2. Similarly to (3.6), it can be proved that  Ca~j + Cr E E for any a~j E E 1 and orij E 

Since CE 1 + C E  2 C E (GEi denotes the image of E i in the continuation of C), we have 

max J~(a)  >/ max J~,(Ca~i + Ga~j) = max J l ( a l )  + max JZ(a2), (3.7) 
,r.I.EE 1 ~/2j E E2 aiJEE alJ EEl ' a  

a2j 6E2 

where j1 and j2  is the contraction of the function J~ on E 1 and E 2 ( p l  and p2 are the regions of integration). 
We represent the functional J~ on the set CE 1 + CE 2 in the form of a sum by virtue of definition (2.18) 
and the fact that  ai~ and ~i 2. have nonintersecting carriers (the regions in which they are nontrivial). We also 
represent the functional (a i j k l (y ) f iM(y) fM(y) )  in the form of a sum. 

In accordance with (3.7) and the variational principle in stresses (2.16), we obtain 
a M M A M = ( a i j k l ( y ) f M ( y ) f M ( y ) )  -- 2 max J~r(~r) <~ ( ilkl(Y)fij  (Y)f~/(Y))I 

aij E E 

-- 2 max J1(crl) + (a i jk l (y) f iM(y) fM(y))2  -- 2 max J2(o2), (3.8) 

where ( )1 and ( )2 are the means of p1 and p2 over the periodicity cell. 
As a result of applying the variational principle (2.16) to periodicity cells p l  and p2,  we obtain the 

following inequality from (3.8): 

A M >1 A 1 + A 2. (3.9) 

Having written inequality (3.9) for the inscribed and circumscribed cells, we obtain 

-~M <~ A M +-~, A M <<. A M_5, (3.10) 

where ~ and 5 are calculated from the formula (aqk l (y ) f iM(y ) fM(y) )A  - 2  max S~(cr), in which A = p \p ,  
- ~qe~.(~) 

for ~ and A = P1 \ P  for & 
Here 6(6) is the rigidity of the structure A, equal to the difference between P1 and the inscribed 

(circumscribed) structures. 
It follows from (3.10) tha t  the rigidity of the composite structure is less than the sum of the rigidities 

of its components. 
Voigt Estimate (Estimate from Above). We take the allowable displacements in the form u = 0. We find 

from (2.17) that  

A M <~ (a i j ld (y ) f iM(y ) f~ (y ) ) .  (3.11) 

Reiss Estimate (estimate from below). Let Yr~ (m E D) be the variables over which periodicity occurs. 
Let YI be an additional variable (which does not exist for three-dimensional composites; this is ys for plates 
and y2 or ys for beams). We assume that  the periodicity cell is planar (for the  plate) or cylindrical (for the 
beam). Then the allowable stresses have the form 

o'ij = Cijy~ (3.12) 
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(Cij are arbitrary constants for the three-dimensional composite; Ci3 = C3i = 0 for the plate and C l l  ~ 0 only 
for the beam; n is an arbitrary integer for plates and beams, while n = 0 for three-dimensional composites). 

With allowance for (2.18), the estimate of (2.17) from below can be written in the form 

A M >1 (--a~lkl(Y)aijakl -4- 2 f  M (Y)akt). (3.13) 

With allowance for (3.12), we write the right side of inequality (3.13) as follows: 

C C "a - 1 "  " 2,~ - ii k,t i jk t tY)YI  ) + Ckt(fM(y)Y}) �9 (3.14) 

There are no restrictions on Cii. We subject (3.14) to unconditional maximization with respect to Cij. 
The Euler equation for (3.14) has the form 

-Ck,(a-~t(y)y}" ) + (fi M (y)y~) = O. 

Its solution is 

C i j  - 1  2n --1 M n = (aijkl(Y)Yf) (f~t (Y)YI) (3.15) 

(the superscript -1 denotes inversion of the tensor of the corresponding dimensionality). 
Substitution of (3.15) into (3.14) gives 

- 1  2n - 1  M n M n AM >1 (aijkl(Y)Yf ) (fij (Y)Yf)(f[a (Y)Y/). (3.16) 

4. E x a m p l e s  of  E s t i m a t e s .  Let us give the form of the function fiM(y) and values of the multiple 
superscript M that  characterize concrete structures m three-dimensional composites, plates, and beams. 

For a three-dimensional composite [1-3, 9], we have 

f i~ (y )  = 6i~5fl, M = (i j i j) ,  i , j  = 1, 2, 3. 

Using these formulas and (3.10) and (3.16), we arrive at the classical Lagrange and Castigliano 
functionals and the Voigt and Reiss estimates for the averaged elastic constants Aijij 

(alj//(y)) i> Ailii >1 (a~j(Y)) -I. (4.1) 

An estimate for the averaged coefficients of elliptic equations, which is similar to (4.1), was obtained 
in [10l. 

The functions f i  M for a plate have the form [3, 4, 9] 

if /f  (Y)=  ~ia6jfl, M = (ct/~ct/~0) for tensile--compressive rigidities and 

f~/#(y) = --6itr6j#y3, M = (cr~cr~2), cr,~ = 1, 2; i , j  = 1, 2, 3 

for bending-torsional rigidities. 
Using these formulas, we arrive at the following estimates for the rigidities of the plate: 
<aa#a#(Y)) i> 0 A~ I> (a2~#(y))-' in tension-compression and 

2 2 2 a--1 2 -I (aa#a#(Y)Y3 2) /> Aa#a# >1 (Y3) (a#a#(Y)Y3) in bending/torsion. 
The functions fM for a beam have the form [9] 
fi M (y) =//i16jl, M = (0) in tension/compression, 
fi M (y) = -6i1611ya , M = (a) in bending, and 
f i U ( y )  = s v y ~ 6 . 6 j , ,  M = (a)  (i,j  = 1, 2, 3, 7 = 2, 3, ff = 2 if  7 = 3, ff = 3 if 7 = 2, $2 = 1, and 

$3 = -1 )  in torsion. 
Using these formulas, we obtain two-sided estimates for the rigidities of the beam: 
( a m l ( y ) )  >1 A ~ >1 1 / (1 /a l l l l (y ) )  in tension, 
(aHH(y)y 2) >t A" >1 (y2)2/(y2/al l l l (y))  in bending, and 
(al.tls(y)y2) >/A b >1 (y~ + y2)2/((y~ + y2)/al.tvr(y)) in torsion. 

616 



REFERENCES 

1, 

2. 

3. 

4. 
5. 

6. 

7. 
8. 
9. 

10. 

A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North- 
Holland, Amsterdam (1968). 
N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodic Media [in Russian], Nauka, 
Moscow (1982). 
B. D. Annin, A. L. Kalamkarov, A. G. Kolpakov, and V. Z. Parton, Analysis and Design of Composite 
Materials and Structural Members [in Russian], Nauka, Novosibirsk (1993). 
D. Caillerie, "Thin elastic and periodic plates," Math. Meth. Appl. Sci., No. 6, 159-191 (1984). 
A. G. Kolpakov, "Calculation of the characteristics of thin elastic rods with a periodic structure," 
Prikl. Mat. Mekh., No. 3, 440--448 (1991). 
A. G. Kolpakov, "Rigidities of elastic cylindrical beams," Prikl. Mat. Mekh., 58, No. 2, 102-109 
(1994). 
Yu. N. P~botnov, Mechanics of a Deformable Solid [in Russian], Nauka, Moscow (1988). 
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland (1976). 
A. L. Kalamkarov and A. G. Kolpakov, Analysis, Design, and Optimization of Composite Structures, 
Wiley, Chichester-New York (1997). 
V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, "G-convergence of parabolic operators," Usp. Mat. 
Nauk, 36, No. 1, 11-58 (1981). 

617 


